
Financial Econometrics A | Final Exam |
January 6th, 2017

Solution Key

1



Question A:

Consider the following log-linear Realized GARCH model given by

xt = σtzt, (A.1)

with zt ∼ i.i.d.N (0, 1) , and

log(σ2t ) = 1 + α log(yt−1), (A.2)

log(yt) = γ + φ log(σ2t ) + ut, (A.3)

with ut ∼ i.i.d.N (0, 1) and α, γ, φ ∈ R. It is assumed that the processes
(zt) and (ut) are independent. Here yt is some observed positive exogenous
covariate as for example the realized volatility.

Question A.1: Use the drift criterion to show that log(yt) is weakly mixing
with E[(log(yt))

2] <∞, if |αφ| < 1.
Given that log(yt) is weakly mixing we do also have that the joint process
(xt, log(yt)) is weakly mixing.

Solution: Substituting (A.2) into (A.3) yields log(yt) = γ+φ+φα log(yt−1)+
ut. Hence, log(yt) is an AR(1) process with an intercept and a Gaussian
(i.i.d.) error term. The drift criterion, with drift function δ(x) = 1 + x2,
is established via standard arguments for the AR(1) process. It should be
mentioned that log(yt) has a positive and continuous conditional density.
Derivations should be included.

Question A.2: Let θ = (α, γ, φ) denote the model parameters. Given a
sample (xt, log(yt)), t = 0, 1, ..., T , the joint log-likelihood is (up to a constant
term and a scaling factor)

LT (θ) =
T∑
t=1

lt(θ),

lt(θ) = − log(σ2t (θ))−
x2t

σ2t (θ)
−
[
log(yt)− γ − φ log(σ2t (θ))

]2
,

where log(σ2t (θ)) = 1 + α log(yt−1).
Show that

∂lt(θ)

∂α
=

{
x2t

σ2t (θ)
− 1 + 2φ

[
log(yt)− γ − φ log(σ2t (θ))

]}
log(yt−1).
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Hint : You may want to use that

∂lt(θ)

∂α
=

∂lt(θ)

∂ log(σ2t (θ))

∂ log(σ2t (θ))

∂α
.

Solution: Using the hint, the result follows directly by observing that

∂lt(θ)

∂ log(σ2t (θ))
= −1 +

x2t
σ2t (θ)

+ 2φ
[
log(yt)− γ − φ log(σ2t (θ))

]
and

∂ log(σ2t (θ))

∂α
= log(yt−1).

Question A.3: Let θ0 = (α0, γ0, φ0) denote the vector of true parameter
values. Define ST (θ) = ∂LT (θ)/∂α.
Assume that (xt, log(yt)) is weakly mixing and satisfies the drift criterion
such that E[(log(yt−1))

2] <∞. Show that

1√
T
ST (θ0)

d→ N (0, v) , (A.4)

where v = (2 + 4φ20)E[(log(yt−1))
2].

Explain briefly what the property (A.4) can be used for.

Hint : Use that log(yt) − γ0 − φ0 log(σ2t (θ0)) = ut. Moreover, you may want
to recall that E[z4t ] = 3.

Solution: The result is established by verifying the conditions of the CLT
for weakly mixing processes (Theorem II.1 from the lecture notes). It holds
that ST (θ0) =

∑T
t=1 f(xt, log(yt), xt−1, log(yt−1)), with

f(xt, log(yt), xt−1, log(yt−1)) =

{
−1 +

x2t
σ2t (θ0)

+ 2φ0
[
log(yt)− γ0 − φ0 log(σ2t (θ0))

]}
log(yt−1)

=
{
z2t − 1 + 2φ0ut

}
log(yt−1).

Hence the CLT is satisfied if E[{z2t − 1 + 2φ0ut} log(yt−1)|xt−1, log(yt−1)] = 0
and E[| {z2t − 1 + 2φ0ut} log(yt−1)|2] < ∞. These conditions hold since (1)
E[{z2t − 1 + 2φ0ut}] = 0, (2) {z2t − 1 + 2φ0ut} and (xt−1, log(yt−1)) are inde-
pendent, (3) E[{z2t − 1 + 2φ0ut}2] = 2 + 4φ20 <∞, and (4) E[(log(yt−1))

2] <
∞. Details and derivations should be provided.
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The property (A.4) is important for obtaining the asymptotic distribution of
the maximum likelihood estimator, and hence for testing hypotheses about
θ. The very good answer would mention the remaining regularity conditions
of Theorem III.2, related to the second- and third-order derivatives of the
log-likelihood function.

Question A.4: For the model (A.1)-(A.3), the one-period VaR at risk level
κ, VaRκT,1, is defined as

PT (xT+1 < −VaRκ
T,1) = κ, κ ∈ (0, 1),

where PT (·) denotes the conditional distribution of xT+1. It can be shown
(but do not do so) that

VaRκ
T,1 = −σT+1Φ−1(κ),

where Φ−1(·) denotes the inverse cdf of the standard normal distribution.
Explain briefly how you would compute an estimate of VaRκ

T,1.

Solution: Given an estimate of θ = (α, γ, φ), denoted θ̂ = (α̂, γ̂, φ̂), ob-
tained by maximum likelihood (or some other method), an estimate of σT+1
is given by

σ̂T+1 =
√

exp[1 + α̂ log(yT )],

where yT is part of the data set. For given κ ∈ (0, 1), Φ−1(κ) is known,
since Φ−1(·) denotes the inverse cdf of the standard normal distribution. An
estimate of VaRκ

T,1 is thus computed as −σ̂T+1Φ−1(κ). One might observe
that we would only need α̂ in order to obtain an estimate of VaRκ

T,1. This
means that one can ignore modelling the dynamics of yt.
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Question B:

Consider the following switching model given by

xt = µ1(st=1) + εt, (B.1)

where µ is an R-valued constant and st can take value 1 or 2. Moreover,
εt ∼ i.i.d.N(0, σ2), and we assume that the processes (st) and (εt) are in-
dependent. Suppose that st is a two-state Markov chain with transition
probabilities P (st = j|st−1 = i) = pij, i, j = 1, 2.
Note that 1(st=1) = 1 if st = 1 and 1(st=1) = 0 if st = 2.

Question B.1: Suppose that µ = 0. Explain if xt is weakly mixing.
What should hold for p11 and p22 for st to be weakly mixing?

Solution: If µ = 0, xt = εt ∼ i.i.d.N(0, σ2), and hence xt is weakly mixing.
The Markov chain st is weakly mixing if p11, p22 < 1 and p11 + p22 > 0.

Question B.2: Next, assume that st is observed. Moreover, suppose that
the transition probabilities satisfy p11 = (1− p22) = p ∈ (0, 1) such that st is
and i.i.d. process with P (st = 1) = p and P (st = 2) = 1− p.
Show that for t ≥ 1, the joint conditional density of (xt, st) is

f(xt, st|xt−1, st−1, ..., x0, s0) =

[
1√

2πσ2
exp

(
−(xt − µ)2

2σ2

)
p

]1(st=1)
×
[

1√
2πσ2

exp

(
− xt

2

2σ2

)
(1− p)

]1(st=2)
.

Solution: Since st is i.i.d., (xt, st) and (xt−1, st−1, ..., x0, s0) are indepen-
dent. Hence,

f(xt, st|xt−1, st−1, ..., x0, s0) = f(xt, st)

= f(xt|st)f(st)

We have that
f(st) = p1(st=1)(1− p)1(st=2) .

Moreover, using that εt ∼ N(0, σ2),

f(xt|st = 1) =
1√

2πσ2
exp

(
−(xt − µ)2

2σ2

)
,

f(xt|st = 2) =
1√

2πσ2
exp

(
− xt

2

2σ2

)
,
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and hence that

f(xt|st) =

[
1√

2πσ2
exp

(
−(xt − µ)2

2σ2

)]1(st=1)
×
[

1√
2πσ2

exp

(
− xt

2

2σ2

)]1(st=2)
.

Question B.3: Maintaining the assumptions from Question B.2, let θ =
(µ, σ2, p) denote the model parameters. The log-likelihood function is

LT (θ) =

T∑
t=1

{
log(p)− 1

2
log(2πσ2)− (xt − µ)2

2σ2

}
1(st=1)

+
T∑
t=1

{
log(1− p)− 1

2
log(2πσ2)− xt

2

2σ2

}
1(st=2).

Let µ̂ denote the maximum likelihood estimator for µ.
Show that

µ̂ =

∑T
t=1 xt1(st=1)∑T
t=1 1(st=1)

.

Moreover, let p̂ denote the maximum likelihood estimator for p. Derive p̂
and argue that p̂ P→ p as T →∞.

Solution: The expression for µ̂ is obtained by solving the F.O.C. for the
maximization of LT (θ) with respect to µ, i.e. by solving ∂LT (θ)/∂µ = 0 for
µ. Derivations should be included.
Likewise, solving ∂LT (θ)/∂p = 0 for p, and using that 1(st=2) = 1 − 1(st=1),
yields

p̂ =
1

T

T∑
t=1

1(st=1).

Since st is i.i.d., we have that 1(st=1) is i.i.d. with E[1(st=1)] = P (st = 1) =
p <∞, it holds by the LLN for i.i.d. processes that

p̂ =
1

T

T∑
t=1

1(st=1)
P→ E[1(st=1)].

Derivations should be included.

Question B.4: Suppose that the process (st) is unobserved, but does still
satisfy the i.i.d. assumption, i.e. p11 = (1 − p22) = p ∈ (0, 1). Then the
estimators derived in Question B.3 are infeasible. Instead we may introduce
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L̃T (θ) = E[LT (θ)|x1, ...xT ].

It holds that

L̃T (θ) =
T∑
t=!

{
log(p)− 1

2
log(2πσ2)− (xt − µ)2

2σ2

}
P ?
t (1)

+
T∑
t=1

{
log(1− p)− 1

2
log(2πσ2)− xt

2

2σ2

}
(1− P ?

t (1)),

where P ?
t (1) = P (st = 1|xt).

Explain briefly the role of L̃T (θ) for the estimation of θ.

Solution: This question is about the EM algorithm. Given P ?
t (1) (E-

step), an estimate of θ is obtained by maximizing L̃T (θ) (M-step). It should
be noted that the computation of P ?

t (1) relies on an initial guess of θ, say
θ̃. Clearly, the estimate of θ will depend on θ̃ through P ?

t (1). Hence, one
may apply the EM algorithm iteratively, by using the estimate of θ for the
computation of P ?

t (1), and then obtain a new estimate of θ. Ideally, a brief
outline of this should be included.

Question B.5: The following figure shows the daily log-returns of the S&P
500 index for the period January 4, 2010 to September 17, 2015.
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Discuss briefly whether the switching model in (B.1) is adequate for mod-
elling the main features of the log-returns. Would another type of Markov
switching model be more suitable?

Solution: By visual inspection of the series, it appears that the returns
are heteroskedastic. Hence a model for a switching level, as (B.1), does not
appear to be appropriate. Instead, as studied during the lectures and problem
sessions, a model for switching variance may be more useful. Specifically, a
switching volatility model is given by

xt = εt,

εt = σtzt, zt ∼ i.i.d.N(0, 1)

σ2t = σ̃211(st=1) + σ̃221(st=2),

with σ̃21 and σ̃
2
2 positive constants, (st) a two-state Markov chain, and with

(st) and (zt) independent. Alternatively, a switching ARCH model may also
serve as a good model for the returns, as studied by Cai (1994, JBES).
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