## Financial Econometrics A | Final Exam | January 6th, 2017 Solution Key

## Question A:

Consider the following log-linear Realized GARCH model given by

$$x_t = \sigma_t z_t, \tag{A.1}$$

with  $z_t \sim i.i.d.N(0,1)$ , and

$$\log(\sigma_t^2) = 1 + \alpha \log(y_{t-1}), \tag{A.2}$$

$$\log(y_t) = \gamma + \phi \log(\sigma_t^2) + u_t, \tag{A.3}$$

with  $u_t \sim i.i.d.N(0,1)$  and  $\alpha, \gamma, \phi \in \mathbb{R}$ . It is assumed that the processes  $(z_t)$  and  $(u_t)$  are independent. Here  $y_t$  is some *observed* positive exogenous covariate as for example the realized volatility.

**Question A.1:** Use the drift criterion to show that  $\log(y_t)$  is weakly mixing with  $E[(\log(y_t))^2] < \infty$ , if  $|\alpha \phi| < 1$ .

Given that  $\log(y_t)$  is weakly mixing we do also have that the joint process  $(x_t, \log(y_t))$  is weakly mixing.

Solution: Substituting (A.2) into (A.3) yields  $\log(y_t) = \gamma + \phi + \phi \alpha \log(y_{t-1}) + u_t$ . Hence,  $\log(y_t)$  is an AR(1) process with an intercept and a Gaussian (i.i.d.) error term. The drift criterion, with drift function  $\delta(x) = 1 + x^2$ , is established via standard arguments for the AR(1) process. It should be mentioned that  $\log(y_t)$  has a positive and continuous conditional density. Derivations should be included.

**Question A.2:** Let  $\theta = (\alpha, \gamma, \phi)$  denote the model parameters. Given a sample  $(x_t, \log(y_t)), t = 0, 1, ..., T$ , the joint log-likelihood is (up to a constant term and a scaling factor)

$$L_T(\theta) = \sum_{t=1}^T l_t(\theta),$$
  
$$l_t(\theta) = -\log(\sigma_t^2(\theta)) - \frac{x_t^2}{\sigma_t^2(\theta)} - \left[\log(y_t) - \gamma - \phi \log(\sigma_t^2(\theta))\right]^2,$$

where  $\log(\sigma_t^2(\theta)) = 1 + \alpha \log(y_{t-1})$ . Show that

$$\frac{\partial l_t(\theta)}{\partial \alpha} = \left\{ \frac{x_t^2}{\sigma_t^2(\theta)} - 1 + 2\phi \left[ \log(y_t) - \gamma - \phi \log(\sigma_t^2(\theta)) \right] \right\} \log(y_{t-1}).$$

*Hint*: You may want to use that

$$\frac{\partial l_t(\theta)}{\partial \alpha} = \frac{\partial l_t(\theta)}{\partial \log(\sigma_t^2(\theta))} \frac{\partial \log(\sigma_t^2(\theta))}{\partial \alpha}.$$

Solution: Using the hint, the result follows directly by observing that

$$\frac{\partial l_t(\theta)}{\partial \log(\sigma_t^2(\theta))} = -1 + \frac{x_t^2}{\sigma_t^2(\theta)} + 2\phi \left[ \log(y_t) - \gamma - \phi \log(\sigma_t^2(\theta)) \right]$$

and

$$\frac{\partial \log(\sigma_t^2(\theta))}{\partial \alpha} = \log(y_{t-1}).$$

**Question A.3:** Let  $\theta_0 = (\alpha_0, \gamma_0, \phi_0)$  denote the vector of true parameter values. Define  $S_T(\theta) = \partial L_T(\theta) / \partial \alpha$ .

Assume that  $(x_t, \log(y_t))$  is weakly mixing and satisfies the drift criterion such that  $E[(\log(y_{t-1}))^2] < \infty$ . Show that

$$\frac{1}{\sqrt{T}}S_T\left(\theta_0\right) \xrightarrow{d} N\left(0, v\right),\tag{A.4}$$

where  $v = (2 + 4\phi_0^2)E[(\log(y_{t-1}))^2]$ . Explain briefly what the property (A.4) can be used for.

*Hint*: Use that  $\log(y_t) - \gamma_0 - \phi_0 \log(\sigma_t^2(\theta_0)) = u_t$ . Moreover, you may want to recall that  $E[z_t^4] = 3$ .

Solution: The result is established by verifying the conditions of the CLT for weakly mixing processes (Theorem II.1 from the lecture notes). It holds that  $S_T(\theta_0) = \sum_{t=1}^T f(x_t, \log(y_t), x_{t-1}, \log(y_{t-1}))$ , with

$$f(x_t, \log(y_t), x_{t-1}, \log(y_{t-1})) = \left\{ -1 + \frac{x_t^2}{\sigma_t^2(\theta_0)} + 2\phi_0 \left[ \log(y_t) - \gamma_0 - \phi_0 \log(\sigma_t^2(\theta_0)) \right] \right\} \log(y_{t-1}) \\ = \left\{ z_t^2 - 1 + 2\phi_0 u_t \right\} \log(y_{t-1}).$$

Hence the CLT is satisfied if  $E[\{z_t^2 - 1 + 2\phi_0 u_t\} \log(y_{t-1}) | x_{t-1}, \log(y_{t-1})] = 0$ and  $E[|\{z_t^2 - 1 + 2\phi_0 u_t\} \log(y_{t-1})|^2] < \infty$ . These conditions hold since (1)  $E[\{z_t^2 - 1 + 2\phi_0 u_t\}] = 0$ , (2)  $\{z_t^2 - 1 + 2\phi_0 u_t\}$  and  $(x_{t-1}, \log(y_{t-1}))$  are independent, (3)  $E[\{z_t^2 - 1 + 2\phi_0 u_t\}^2] = 2 + 4\phi_0^2 < \infty$ , and (4)  $E[(\log(y_{t-1}))^2] < \infty$ . Details and derivations should be provided. The property (A.4) is important for obtaining the asymptotic distribution of the maximum likelihood estimator, and hence for testing hypotheses about  $\theta$ . The very good answer would mention the remaining regularity conditions of Theorem III.2, related to the second- and third-order derivatives of the log-likelihood function.

**Question A.4:** For the model (A.1)-(A.3), the one-period VaR at risk level  $\kappa$ , VaR<sup> $\kappa$ </sup><sub>T.1</sub>, is defined as

$$P_T(x_{T+1} < -\operatorname{VaR}_{T,1}^{\kappa}) = \kappa, \quad \kappa \in (0,1),$$

where  $P_T(\cdot)$  denotes the conditional distribution of  $x_{T+1}$ . It can be shown (but do not do so) that

$$\operatorname{VaR}_{T,1}^{\kappa} = -\sigma_{T+1} \Phi^{-1}(\kappa),$$

where  $\Phi^{-1}(\cdot)$  denotes the inverse cdf of the standard normal distribution. Explain briefly how you would compute an estimate of VaR<sup> $\kappa$ </sup><sub>T1</sub>.

Solution: Given an estimate of  $\theta = (\alpha, \gamma, \phi)$ , denoted  $\hat{\theta} = (\hat{\alpha}, \hat{\gamma}, \hat{\phi})$ , obtained by maximum likelihood (or some other method), an estimate of  $\sigma_{T+1}$  is given by

$$\hat{\sigma}_{T+1} = \sqrt{\exp[1 + \hat{\alpha}\log(y_T)]},$$

where  $y_T$  is part of the data set. For given  $\kappa \in (0,1)$ ,  $\Phi^{-1}(\kappa)$  is known, since  $\Phi^{-1}(\cdot)$  denotes the inverse cdf of the standard normal distribution. An estimate of  $\operatorname{VaR}_{T,1}^{\kappa}$  is thus computed as  $-\hat{\sigma}_{T+1}\Phi^{-1}(\kappa)$ . One might observe that we would only need  $\hat{\alpha}$  in order to obtain an estimate of  $\operatorname{VaR}_{T,1}^{\kappa}$ . This means that one can ignore modelling the dynamics of  $y_t$ .

## **Question B:**

Consider the following switching model given by

$$x_t = \mu \mathbf{1}_{(s_t=1)} + \varepsilon_t, \tag{B.1}$$

where  $\mu$  is an  $\mathbb{R}$ -valued constant and  $s_t$  can take value 1 or 2. Moreover,  $\varepsilon_t \sim i.i.d.N(0, \sigma^2)$ , and we assume that the processes  $(s_t)$  and  $(\varepsilon_t)$  are independent. Suppose that  $s_t$  is a two-state Markov chain with transition probabilities  $P(s_t = j | s_{t-1} = i) = p_{ij}, i, j = 1, 2$ . Note that  $1_{(s_t=1)} = 1$  if  $s_t = 1$  and  $1_{(s_t=1)} = 0$  if  $s_t = 2$ .

**Question B.1:** Suppose that  $\mu = 0$ . Explain if  $x_t$  is weakly mixing. What should hold for  $p_{11}$  and  $p_{22}$  for  $s_t$  to be weakly mixing?

Solution: If  $\mu = 0$ ,  $x_t = \varepsilon_t \sim i.i.d.N(0, \sigma^2)$ , and hence  $x_t$  is weakly mixing. The Markov chain  $s_t$  is weakly mixing if  $p_{11}$ ,  $p_{22} < 1$  and  $p_{11} + p_{22} > 0$ .

**Question B.2:** Next, assume that  $s_t$  is observed. Moreover, suppose that the transition probabilities satisfy  $p_{11} = (1 - p_{22}) = p \in (0, 1)$  such that  $s_t$  is and *i.i.d.* process with  $P(s_t = 1) = p$  and  $P(s_t = 2) = 1 - p$ . Show that for  $t \ge 1$ , the joint conditional density of  $(x_t, s_t)$  is

$$f(x_t, s_t | x_{t-1}, s_{t-1}, ..., x_0, s_0) = \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_t - \mu)^2}{2\sigma^2}\right) p\right]^{1_{(s_t=1)}} \times \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x_t^2}{2\sigma^2}\right) (1-p)\right]^{1_{(s_t=2)}}$$

Solution: Since  $s_t$  is i.i.d.,  $(x_t, s_t)$  and  $(x_{t-1}, s_{t-1}, ..., x_0, s_0)$  are independent. Hence,

$$f(x_t, s_t | x_{t-1}, s_{t-1}, \dots, x_0, s_0) = f(x_t, s_t)$$
  
=  $f(x_t | s_t) f(s_t)$ 

We have that

$$f(s_t) = p^{1_{(s_t=1)}} (1-p)^{1_{(s_t=2)}}.$$

Moreover, using that  $\varepsilon_t \sim N(0, \sigma^2)$ ,

$$f(x_t|s_t = 1) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_t - \mu)^2}{2\sigma^2}\right),$$
  
$$f(x_t|s_t = 2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x_t^2}{2\sigma^2}\right),$$

and hence that

$$f(x_t|s_t) = \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_t - \mu)^2}{2\sigma^2}\right)\right]^{1_{(s_t=1)}} \times \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x_t^2}{2\sigma^2}\right)\right]^{1_{(s_t=2)}}$$

**Question B.3:** Maintaining the assumptions from Question B.2, let  $\theta = (\mu, \sigma^2, p)$  denote the model parameters. The log-likelihood function is

$$L_T(\theta) = \sum_{t=1}^T \left\{ \log(p) - \frac{1}{2} \log(2\pi\sigma^2) - \frac{(x_t - \mu)^2}{2\sigma^2} \right\} \mathbf{1}_{(s_t=1)} + \sum_{t=1}^T \left\{ \log(1-p) - \frac{1}{2} \log(2\pi\sigma^2) - \frac{x_t^2}{2\sigma^2} \right\} \mathbf{1}_{(s_t=2)}.$$

Let  $\hat{\mu}$  denote the maximum likelihood estimator for  $\mu$ . Show that

$$\hat{\mu} = \frac{\sum_{t=1}^{T} x_t \mathbf{1}_{(s_t=1)}}{\sum_{t=1}^{T} \mathbf{1}_{(s_t=1)}}.$$

Moreover, let  $\hat{p}$  denote the maximum likelihood estimator for p. Derive  $\hat{p}$  and argue that  $\hat{p} \xrightarrow{P} p$  as  $T \to \infty$ .

Solution: The expression for  $\hat{\mu}$  is obtained by solving the F.O.C. for the maximization of  $L_T(\theta)$  with respect to  $\mu$ , i.e. by solving  $\partial L_T(\theta)/\partial \mu = 0$  for  $\mu$ . Derivations should be included.

Likewise, solving  $\partial L_T(\theta)/\partial p = 0$  for p, and using that  $1_{(s_t=2)} = 1 - 1_{(s_t=1)}$ , yields

$$\hat{p} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{1}_{(s_t=1)}.$$

Since  $s_t$  is *i.i.d.*, we have that  $1_{(s_t=1)}$  is *i.i.d.* with  $E[1_{(s_t=1)}] = P(s_t=1) = p < \infty$ , it holds by the LLN for *i.i.d.* processes that

$$\hat{p} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{1}_{(s_t=1)} \xrightarrow{P} E[\mathbf{1}_{(s_t=1)}].$$

Derivations should be included.

**Question B.4:** Suppose that the process  $(s_t)$  is *unobserved*, but does still satisfy the *i.i.d.* assumption, i.e.  $p_{11} = (1 - p_{22}) = p \in (0, 1)$ . Then the estimators derived in Question B.3 are infeasible. Instead we may introduce

$$\tilde{L}_T(\theta) = E[L_T(\theta)|x_1, \dots x_T].$$

It holds that

$$\tilde{L}_{T}(\theta) = \sum_{t=1}^{T} \left\{ \log(p) - \frac{1}{2} \log(2\pi\sigma^{2}) - \frac{(x_{t} - \mu)^{2}}{2\sigma^{2}} \right\} P_{t}^{\star}(1) + \sum_{t=1}^{T} \left\{ \log(1 - p) - \frac{1}{2} \log(2\pi\sigma^{2}) - \frac{x_{t}^{2}}{2\sigma^{2}} \right\} (1 - P_{t}^{\star}(1)),$$

where  $P_t^{\star}(1) = P(s_t = 1 | x_t)$ . Explain briefly the role of  $\tilde{L}_T(\theta)$  for the estimation of  $\theta$ .

Solution: This question is about the EM algorithm. Given  $P_t^{\star}(1)$  (Estep), an estimate of  $\theta$  is obtained by maximizing  $\tilde{L}_T(\theta)$  (M-step). It should be noted that the computation of  $P_t^{\star}(1)$  relies on an initial guess of  $\theta$ , say  $\tilde{\theta}$ . Clearly, the estimate of  $\theta$  will depend on  $\tilde{\theta}$  through  $P_t^{\star}(1)$ . Hence, one may apply the EM algorithm iteratively, by using the estimate of  $\theta$  for the computation of  $P_t^{\star}(1)$ , and then obtain a new estimate of  $\theta$ . Ideally, a brief outline of this should be included.

**Question B.5:** The following figure shows the daily log-returns of the S&P 500 index for the period January 4, 2010 to September 17, 2015.



Discuss briefly whether the switching model in (B.1) is adequate for modelling the main features of the log-returns. Would another type of Markov switching model be more suitable?

Solution: By visual inspection of the series, it appears that the returns are heteroskedastic. Hence a model for a switching level, as (B.1), does not appear to be appropriate. Instead, as studied during the lectures and problem sessions, a model for switching variance may be more useful. Specifically, a switching volatility model is given by

$$x_t = \varepsilon_t,$$
  

$$\varepsilon_t = \sigma_t z_t, \quad z_t \sim i.i.d.N(0, 1)$$
  

$$\sigma_t^2 = \tilde{\sigma}_1^2 \mathbf{1}_{(s_t=1)} + \tilde{\sigma}_2^2 \mathbf{1}_{(s_t=2)},$$

with  $\tilde{\sigma}_1^2$  and  $\tilde{\sigma}_2^2$  positive constants,  $(s_t)$  a two-state Markov chain, and with  $(s_t)$  and  $(z_t)$  independent. Alternatively, a switching ARCH model may also serve as a good model for the returns, as studied by Cai (1994, JBES).